TY - JOUR
T1 - Biodegradation of Low-Density Polyethylene—LDPE by the Lepidopteran Galleria Mellonella Reusing Beekeeping Waste
AU - Poma, Orlando
AU - Ricce, Betty
AU - Beraún, Jeyson
AU - Perez Carpio, Jackson Edgardo
AU - Fernandez, Hugo
AU - Soria, Juan
N1 - Publisher Copyright:
Copyright © 2022 Poma, Ricce, Beraún, Perez Carpio, Fernandez and Soria.
PY - 2022/9/9
Y1 - 2022/9/9
N2 - Plastic pollution is one of the most serious environmental problems of this century because most plastics are single-use, and once their useful life is over, they become pollutants, since their decomposition takes approximately 100–400 years. The objective of this research is to evaluate the efficacy of low-density polyethylene (LDPE) biodegradation by G. mellonella in the district of Pangoa, Junín, Peru. For the development of the study, the G. mellonella was conditioned in three groups of beekeeping residues (beeswax, balanced diet, and wheat bran); after the conditioning stage, the biodegradation treatment was developed, which consisted of placing the G. mellonella in terrariums with the LDPE, the treatments were carried out at three different times (24, 36, and 48 h). To evaluate the efficacy of biodegradation, two analyses were taken into account: the Raman analysis of the low-density polyethylene samples and the weight reduction of the treated LDPE. The results of the Raman analysis indicated that the best treatment was the one applied with G. mellonella conditioned with beeswax, obtaining a wavelength intensity of 0.45 μ.a., while the weight reduction of the LDPE indicated that the best results were given at 36 h and conditioned with beeswax with a reduction of 236.3 mg. In conclusion, the use of G. mellonella for the biodegradation of low-density polyethylene is effective when it is conditioned with beeswax and the treatment is carried out at 36 h.
AB - Plastic pollution is one of the most serious environmental problems of this century because most plastics are single-use, and once their useful life is over, they become pollutants, since their decomposition takes approximately 100–400 years. The objective of this research is to evaluate the efficacy of low-density polyethylene (LDPE) biodegradation by G. mellonella in the district of Pangoa, Junín, Peru. For the development of the study, the G. mellonella was conditioned in three groups of beekeeping residues (beeswax, balanced diet, and wheat bran); after the conditioning stage, the biodegradation treatment was developed, which consisted of placing the G. mellonella in terrariums with the LDPE, the treatments were carried out at three different times (24, 36, and 48 h). To evaluate the efficacy of biodegradation, two analyses were taken into account: the Raman analysis of the low-density polyethylene samples and the weight reduction of the treated LDPE. The results of the Raman analysis indicated that the best treatment was the one applied with G. mellonella conditioned with beeswax, obtaining a wavelength intensity of 0.45 μ.a., while the weight reduction of the LDPE indicated that the best results were given at 36 h and conditioned with beeswax with a reduction of 236.3 mg. In conclusion, the use of G. mellonella for the biodegradation of low-density polyethylene is effective when it is conditioned with beeswax and the treatment is carried out at 36 h.
KW - Galleria mellonella
KW - LDPE
KW - biodegradation
KW - plastic
KW - pollution
UR - http://www.scopus.com/inward/record.url?scp=85139437371&partnerID=8YFLogxK
U2 - 10.3389/fbioe.2022.915331
DO - 10.3389/fbioe.2022.915331
M3 - Article
AN - SCOPUS:85139437371
SN - 2296-4185
VL - 10
JO - Frontiers in Bioengineering and Biotechnology
JF - Frontiers in Bioengineering and Biotechnology
M1 - 915331
ER -