A machine learning approach to analyse ozone concentration in metropolitan area of Lima, Peru

Natalí Carbo-Bustinza, Marisol Belmonte, Vasti Jimenez, Paula Montalban, Magiory Rivera, Fredi Gutiérrez Martínez, Mohamed Mehdi Hadi Mohamed, Alex Rubén Huamán De La Cruz, Kleyton da Costa, Javier Linkolk López-Gonzales

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

13 Citas (Scopus)

Resumen

The main objective of this study is to model the concentration of ozone in the winter season on air quality through machine learning algorithms, detecting its impact on population health. The study area involves four monitoring stations: Ate, San Borja, Santa Anita and Campo de Marte, all located in Metropolitan Lima during the years 2017, 2018 and 2019. Exploratory, correlational and predictive approaches are presented. The exploratory results showed that ATE is the station with the highest prevalence of ozone pollution. Likewise, in an hourly scale analysis, the pollution peaks were reported at 00:00 and 14:00. Finally, the machine learning models that showed the best predictive capacity for adjusting the ozone concentration were the linear regression and support vector machine.

Idioma originalInglés
Número de artículo22084
PublicaciónScientific Reports
Volumen12
N.º1
DOI
EstadoPublicada - dic. 2022

Huella

Profundice en los temas de investigación de 'A machine learning approach to analyse ozone concentration in metropolitan area of Lima, Peru'. En conjunto forman una huella única.

Citar esto