Influence measures in nonparametric regression model with symmetric random errors

Germán Ibacache-Pulgar, Cristian Villegas, Javier Linkolk López-Gonzales, Magaly Moraga

Producción científica: Contribución a una revistaArtículo de revisiónrevisión exhaustiva

3 Citas (Scopus)

Resumen

In this paper we present several diagnostic measures for the class of nonparametric regression models with symmetric random errors, which includes all continuous and symmetric distributions. In particular, we derive some diagnostic measures of global influence such as residuals, leverage values, Cook’s distance and the influence measure proposed by Peña (Technometrics 47(1):1–12, 2005) to measure the influence of an observation when it is influenced by the rest of the observations. A simulation study to evaluate the effectiveness of the diagnostic measures is presented. In addition, we develop the local influence measure to assess the sensitivity of the maximum penalized likelihood estimator of smooth function. Finally, an example with real data is given for illustration.

Idioma originalInglés
Páginas (desde-hasta)1-25
Número de páginas25
PublicaciónStatistical Methods and Applications
Volumen32
N.º1
DOI
EstadoPublicada - mar. 2023

Huella

Profundice en los temas de investigación de 'Influence measures in nonparametric regression model with symmetric random errors'. En conjunto forman una huella única.

Citar esto