Modelo de reconocimiento automático y detección de matrículas basado en OpenCV y Machine Learning

Elias Ccoto Huallpa, Angel Abel Sullon Macalupu, Jorge Eddy Otazu Luque, Jorge Sánchez-Garces

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

Automatic number plate recognition (ALPR) is an important task with many applications in intelligent transportation and surveillance systems. This research takes into consideration the functions of image processing for the detection and recognition of number plates; which can come from noisy sources, low illumination, different angles and distances taken from the images (uncontrolled environments); most of the existing automated number plate recognition systems only work in a controlled environment where images are captured from a right angle with good illumination and clarity [25]. According to [11] in uncontrolled environments the probability of recognising the characters on the plates decreases and this has been observed in the research. To achieve image processing, morphological transformation, Gaussian smoothing and Gaussian thresholding were used, then 3 different algorithms K-NN, SVM and Tesseract were used for character recognition, each algorithm with their respective hyperparameters for optimisation. The images were separated into two groups, the first with 80 images taken from different angles and distance (uncontrolled environment) where the best Overall accuracy was obtained with 86 % and the second group were images taken at a right angle and similar distance (controlled environment), this group obtained an Overall accuracy of 95.5 %.

Título traducido de la contribuciónAutomatic recognition and license plate detection model based on OpenCV and Machine Learning
Idioma originalEspañol
Título de la publicación alojadaApplications in Software Engineering - Proceedings of the 11th International Conference on Software Process Improvement, CIMPS 2022
EditoresJezreel Mejia Miranda, Jair de Jesus Cambon Navarrete, Juan Ramon Nieto Quezada
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas133-142
Número de páginas10
ISBN (versión digital)9798350398960
DOI
EstadoPublicada - 2022
EventoApplications in Software Engineering - 11th International Conference on Software Process Improvement, CIMPS 2022 - Acapulco, Guerrero, México
Duración: 19 oct. 202221 oct. 2022

Serie de la publicación

NombreApplications in Software Engineering - Proceedings of the 11th International Conference on Software Process Improvement, CIMPS 2022

Conferencia

ConferenciaApplications in Software Engineering - 11th International Conference on Software Process Improvement, CIMPS 2022
País/TerritorioMéxico
CiudadAcapulco, Guerrero
Período19/10/2221/10/22

Palabras clave

  • KNN
  • Machine Learning y hiperpárametros
  • OpenCV
  • SVM
  • Tesseract

Huella

Profundice en los temas de investigación de 'Modelo de reconocimiento automático y detección de matrículas basado en OpenCV y Machine Learning'. En conjunto forman una huella única.

Citar esto