Multiple Linear Regression Model of Environmental Variables, Predictors of Global Solar Radiation in the Area of East Lima, Peru

Juan J. Soria, Orlando Poma, David A. Sumire, Joel Hugo Fernandez Rojas, Sulamita Marinela Ramos Chipa

Producción científica: Contribución a una revistaArtículo de la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

Multiple regression models are very relevant to predict values using predictor variables. The objective of this study was to predict the global solar radiation in the year 2019 in the area of East Lima, Peru. Three continuous quantitative predictor variables were analyzed: temperature, humidity, wind speed and the response variable was global solar radiation, resulting in a model with excellent significance p<0.001 that shows the prediction is effective. The multiple linear regression method was used, finding an average global radiation of 175 W/m2 and predictor variables with average temperature of 19.2 °C, humidity 23.9% and wind speed 1.77 m/s, with the highest temperature in summer recorded at 24.6°C, the highest humidity of 51.2% in autumn, the highest wind speed in summer at 2.63 m/s and the highest maximum global solar radiation in spring with 183 W/m2.

Idioma originalInglés
Número de artículo012009
PublicaciónIOP Conference Series: Earth and Environmental Science
Volumen1006
N.º1
DOI
EstadoPublicada - 1 abr. 2022
Evento2021 12th International Conference on Environmental Science and Technology, ICEST 2021 - Virtual, Online
Duración: 24 set. 202126 set. 2021

Huella

Profundice en los temas de investigación de 'Multiple Linear Regression Model of Environmental Variables, Predictors of Global Solar Radiation in the Area of East Lima, Peru'. En conjunto forman una huella única.

Citar esto