Prediction Model of the Burkholderia glumae Pest in Rice Crops Using Machine Learning and Spatial Interpolation

Joel Perez-Suarez, Nemias Saboya, A. Angel Sullon

Producción científica: Capítulo del libro/informe/acta de congresoCapítulorevisión exhaustiva

1 Cita (Scopus)

Resumen

In recent years, agriculture, especially rice crops, has been affected by constant climatic changes. Climatic changes cause some pathogens to be favored by altering their products and generating economic losses. The study aimed to develop a machine learning model to predict the appearance of the Burkholderia glumae pest in rice crops in the San Martin region, Peru. The IDW spatial interpolation technique was used to obtain temperature and precipitation data in exploring the data. The study applied a series of supervised algorithms. Among these, the random forest classifier (RFC) was the one that obtained the highest value with an accuracy of 88%. In addition, an application was created where the prediction of the Burkholderia glumae plague in a specific area of the region is displayed.

Idioma originalInglés
Título de la publicación alojadaLecture Notes on Data Engineering and Communications Technologies
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas681-694
Número de páginas14
DOI
EstadoPublicada - 2022

Serie de la publicación

NombreLecture Notes on Data Engineering and Communications Technologies
Volumen126
ISSN (versión impresa)2367-4512
ISSN (versión digital)2367-4520

Huella

Profundice en los temas de investigación de 'Prediction Model of the Burkholderia glumae Pest in Rice Crops Using Machine Learning and Spatial Interpolation'. En conjunto forman una huella única.

Citar esto